1,675 research outputs found

    Water use efficiency of China\u27s terrestrial ecosystems and responses to drought

    Get PDF
    Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China’s terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg−1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. “Turning-points” were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity

    Minimum Initial Marking Estimation in Labeled Petri Nets With Unobservable Transitions

    Get PDF
    In the literature, researchers have been studying the minimum initial marking (MIM) estimation problem in the labeled Petri nets with observable transitions. This paper extends the results to labeled Petri nets with unobservable transitions (with certain special structure) and proposes algorithms for the MIM estimation (MIM-UT). In particular, we assume that the Petri net structure is given and the unobservable transitions in the net are contact-free. Based on the observation of a sequence of labels, our objective is to find the set of MIM(s) that is(are) able to produce this sequence and has(have) the smallest total number of tokens. An algorithm is developed to find the set of MIM(s) with polynomial complexity in the length of the observed label sequence. Two heuristic algorithms are also proposed to reduce the computational complexity. An illustrative example is also provided to demonstrate the proposed algorithms and compare their performance
    corecore